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Shear zones in granular media: Three-dimensional contact dynamics simulation
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The properties of shear zones forming in slow three-dimensional granular flow are investigated. We simulate
a straight version of the split-bottom shear cell. It is shown that the same type of wide shear zones is obtained
in the presence as well as in the absence of gravity. We investigate the relaxation of the material toward
stationary flow and analyze the stress and the velocity fields. A functional form of the widening of the shear
zone inside the bulk is given. We discuss the growth of the region where the material is in the critical state. The
growth of this critical zone turns out to be responsible for the initial transient of the shear zone.
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I. INTRODUCTION

Granular materials consist of macroscopic grains which
obey the laws of classical mechanics. A large variety of phe-
nomena shows that the collective behavior of the grains can
be surprisingly complex [1,2] which, in most cases, presents
a great challenge to the theoretical description.

In the present paper we focus on one of the unsettled
problems of granular media: the quasistatic rheology [3]. The
flow is called quasistatic when inertia effects are negligible.
This can be achieved by a combination of large pressure and
low deformation rate.

An important feature of quasistatic flows is that local
stresses become independent of the local deformation rate. If
an experiment is repeated with ten times larger or ten times
smaller driving speed (but still in the quasistatic regime) the
stress field remains the same and the velocity field is simply
rescaled by the driving speed. This is why no constitutive
law relating local stress and strain rate has been established
for quasistatic flows. However, without such a constitutive
law one cannot use the classical hydrodynamic approach to
describe the rheology.

An experimental setup, which is particularly suited to pro-
vide insight into quasistatic granular flow is the split-bottom
shear cell. It has recently been the subject of many experi-
mental, theoretical, and simulational studies [4—13]. In ex-
periments the cell has a cylindrical form (modified Couette
cell) [5]. It is a container whose bottom is divided into a
central disk and an outer ring. The disk rotates slowly with
respect to the rest of the container. When sand is filled in, it
is dragged along by the rotating central bottom disk so that a
localized shear zone emerges. It starts at the perimeter of the
bottom disk, spreads into the bulk, and reaches the top sur-
face, if the filling height is not too large. The shear zone can
be characterized by its center sheet (the sheet of maximum
shear rates) and the width of the zone around the center
sheet.

Depending on the experimental conditions the behavior of
the center sheet can be quite complicated. Due to the cylin-
drical shearing it gets a nontrivial curved shape with decreas-
ing radius for increasing height. The shape depends strongly
on the filling height Hgy, [5]. For large values of Hy), the
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center sheet does not reach the top of the system but remains
buried in the bulk [7-9] forming a cupolalike shape. If two
layers of different granular materials are present the center
sheet can be refracted when the shear zone leaves one layer
and enters into the other [12]. All these effects will be
avoided hereafter in the paper. We deal with the straight ver-
sion of the split-bottom cell (see later) [10,11], where the
center sheet remains a vertical plane. Therefore the flow be-
comes simpler and the widening of the shear zone can be
analyzed more easily.

The width of the shear zone W has been found to be an
increasing function of the bulk height z above the base and
also an increasing function of the filling height Hg, [5,9,13].
The width at the top (W,,) grows more slowly than the
filling height but faster than the square root of Hy. The
experimental data suggest that W,,,, is approximately a power
law with exponent 2/3 [5,8].

It is a fundamental question what the origin of this type of
rheology is. However, no satisfactory description has been
found so far. Some of the theoretical approaches [7,10,11,13]
are able to provide wide shear zones and, at the same time,
satisfy the requirement of rate independence. One approach
[7,12,13] is based on the weakest sliding surface which fluc-
tuates during the flow; another one [10,11] is based on the
variation of the effective friction coefficient depending on
the orientation of the local shear plane. At the current stage
these models are not very well established and concerning
the details they leave many questions open. In order to refine
existing models or propose new ones, precise data are needed
that are measured in the bulk, regarding, e.g., velocity and
stress fields.

In our present study we provide new details about the
flow in the split-bottom shear cell. We perform discrete ele-
ment (DEM) simulations where the velocities and stresses
are easily accessible in the bulk. The simulations are de-
scribed in Sec. II. In Secs. III A and III B we discuss the
velocity field. Section III C is devoted to the widening of the
shear zone in the bulk. Previous experiments and simulations
were performed in gravity and, consequently, in inhomoge-
neous pressure distribution. We analyze shear zone formation
also in a zero gravity environment in order to clarify the role
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FIG. 1. The straight split-bottom cell.

of gravity (Sec. III D). The initial relaxation of the velocity
field and the properties of the stress field are discussed in
Secs. IIT F and III G, respectively.

II. DESCRIPTION OF THE SIMULATION

In our simulations we examine a straight version of the
split-bottom shear cell [10,11] shown in Fig. 1. Here the
bottom is cut along a straight line. The left and the right sides
of the boundary move along the y axis in opposite directions
both with speed v, In the y direction periodic boundary
conditions are applied. Small grains are glued to the side
walls and to the bottom in order to make their surface rough.

There is a frictionless piston parallel to the xy plane at the
top of the system. Its position in the z direction is equal to
the filling height. The piston exerts a constant compressive
force Fy, acting in a negative z direction. We use two ways
to put the system under pressure. Either we apply a large
force F, and set gravity to zero or we use gravity instead
and put only a weak force on the piston. The role of the
piston in the former case is to provide the confining pressure
on the system. In the latter case it keeps only the top surface
flat and ensures a uniform filling height for the whole sys-
tem. Then the piston has a negligible effect on the pressure
distribution in the bulk, which is generated essentially by
gravity.

Our simulations are discrete element simulations based on
the method of contact dynamics [14,15]. The grains are non-
cohesive, rigid, and spherical interacting via frictional con-
tact forces. Both the static and dynamic friction coefficients
are equal to 0.2. The collisions between grains are perfectly
inelastic. Throughout this paper every length is measured in
units of the maximal grain radius. Radii are uniformly dis-
tributed between 0.8 and 1.0.

We tested various system sizes. The number of the grains
N contained by the shear cell varies between 1000 and
100 000. The width L,, the length L, and the filling height
Hg, of the systems range from 20 to 240, from 12.5 to 75,
and from 8 to 70, respectively.
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Our simulation corresponds to an experimental situation
where the grains have density 2400 kg/m? and maximal ra-
dius 1 mm. The value of vy, is set to 0.7 cm/s (unless
stated otherwise). The magnitude of the piston force Fy; is
scaled proportional to the surface of the piston in order to
achieve the same pressure for different system sizes. This
pressure is 500 N/m? when gravity is switched off. Together
with gravity the pressure on the piston is set to 25 N/m?.

The preparation of the system starts from a gas state
where grains have random positions. First we compactify the
material with the piston, then gravity is switched on if
needed and the shearing starts. Before measuring velocities
and stresses we let the system relax in order to reach station-
ary flow.

III. RESULTS
A. Transverse velocities

First we examine whether the shear cell generates any
convection orthogonal to the shear direction y. The compo-
nents of the coarse-grained velocities v,, v,, and v, are func-
tions of the coordinates x and z (the coordinate y is averaged
out). In the present shear cell v, and v, would vanish for a
laminar flow of a Newtonian fluid, however, this does not
hold a priori for quasistatic flow of granular media. One
could imagine various kinds of stationary flows with nonva-
nishing convection in the x-z plane, e.g., where grains, be-
sides moving in the +y direction, slowly rise near to the
symmetry plane and descend far away from it.

Figure 2 shows a typical transverse velocity field. This
simulation contains 100 000 grains and is performed without
gravity. Before recording velocity data we sheared the sys-
tem for a long time in order to achieve a steady state. During
this preshearing the system had total shear displacement A\
=500 (this is the displacement of the two sides of the shear
cell with respect to each other). The transversal velocities
shown in Fig. 2(a) are averaged over a further shear displace-
ment of AA=60. The largest transversal velocities are
smaller than vg,., by a factor of about 1/200, and they de-
crease further if the average is taken over larger shear dis-
placements. This is shown in Fig. 2(b), where the shear dis-
placement is five times larger compared to Fig. 2(a). This
leads us to the conclusion that the vortices in the transverse
velocity field are random fluctuations. Therefore we will fo-
cus on the motion along the shear direction y in the follow-
ing.

B. Velocity profiles

The velocity profiles found in our simulations, as we will
show below, are in agreement with previous experimental
and numerical measurements in the modified Couette cell
[4,5,8,9,11]. Our new results concern the slow evolution in
the outskirts of the shear zone, its widening with increasing
distance from the bottom slit (Sec. III C), and the influence
of gravity (Sec. III D). In particular, it will be shown that
gravity has surprisingly little effect on the properties of the
shear zone.
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FIG. 2. The average velocity field in the cross section of the cell
orthogonal to the shear direction. The time average is taken over a
shear displacement 60 for (a) and 300 for (b).

In order to examine the velocities v, we divide our system
into different slices at constant heights z. z ranges from zero
to the filling height Hy;;. At each height z the velocity v, goes
from —vgeqr O Ughear @S X 1s increased. This transition is very
sharp at the bottom, where the boundary condition prescribes
a step function, and broader toward the top of the system.
Figure 3 shows the profiles for a system without gravity at
several heights.

The velocity profiles can be fitted well with error func-
tions [5]. Consequently, the shear rate ., as a function of x
is a Gaussian curve. We define the width of the shear zone
W(z) as the square root of the second moment of this (nor-
malized) Gaussian at height z [23].

The accuracy of the fit by an error function is assessed in
Figs. 4 and 5. In Fig. 4 the deviations between data and fit
are plotted for several systems. Deviations are random and
approximately 2% of vy, near the center. Further away
from the center the errors become smaller, however, system-
atic deviations can be seen: They are positive on the left and
negative on the right-hand side. From Fig. 5 one can con-
clude that these systematic deviations are going to vanish, if
one lets the simulations run longer. The velocity profile ap-
proaches the error function shape first in the center, but much
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FIG. 3. The velocity profiles are taken from the same system at
three different heights z. The line shows an error function fit.

more slowly in the outskirts. If we let the simulations go on,
the tail of the velocity profile keeps evolving and is getting
closer and closer to the Gaussian tail of the error function.
We will come back to the relaxation process in Sec. III F.

The above properties of the velocity distribution are in
agreement with experimental data [5], which have been
achieved in gravity in a modified Couette cell, whereas the
simulation data presented in Figs. 3—5 were obtained for zero
gravity. As we will discuss below, gravity has indeed only
very little influence on the velocity profile.

C. Widening of the shear zone in the bulk

Previous experimental and numerical studies revealed that
the shear zone becomes wider as it goes from the bottom z
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FIG. 4. The difference A between the velocity data and the fit by
error function is shown. The data are recorded in nine different
systems. The number of grains used in the simulations is between
6000 and 100 000. Minimum and maximum heights are 25.6 and
69. In all cases shown here gravity is set to zero. Only the fits of the
velocity profiles at z=Hp), are evaluated. For each system the coor-
dinate x is normalized by the width of the shear zone measured in
the top layer.
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FIG. 5. The slow time evolution of the tail of the velocity profile
is shown for a system of 10 000 grains at the filling height Hpy,
=25.6. For the three different profiles the measurements are started
at shear displacement 200, 800, and 1800. Each profile represents
an average over an additional shear displacement 200. The two lines
are fit curves of the velocity data: the upper one is a hyperbolic
tangent; the lower one is the error function. It can be seen that the
velocities follow the Gaussian tail of the error function the better
the larger the shear deformation of the sample is.

=0 toward the top z=Hy). There are some experimental and
theoretical indications reported in [10] that W(z) may be a
power law with an exponent between 0.2 and 0.5. However,
we are not aware of any conclusive experimental data con-
cerning the exact shape of the function W(z). It is a crucial
question what the functional form is, because it provides a
very strong test for theories. Such tests are clearly needed as
the problem of quasistatic flow and shear zone formation is
far from understood.

It is a nice feature of computer simulations that one can
easily access the velocity data also inside the bulk. Based on
these data we are able to fit the functional form of W(z). We
tested many systems with different filling heights. It turns out
that all the data collapse on the same line when plotted in the
frame [W(z)/ Wyop,,2/ Hgy ], which can be seen in Fig. 6. The
master curve is a quarter of a circle:

i)
W)= Wp\[1= 1= 7] (1)

Thus we find that the widening of the shear zone starts with
an exponent 1/2 for small values of z but soon departs from
the power law. W(z) reaches the top of the system at a right
angle.

This latter condition of a right angle at the top seems to be
quite reasonable at least for the case when gravity is
switched off. The frictionless piston we apply at the top ex-
erts no drag force on the material, but only applies normal
pressure on the system. An equivalent situation can be
achieved if we take the original system together with its mir-
ror image (see Fig. 7) and, at the same time, remove the
piston. Then we have a split boundary both at the bottom and
at the top. The total height of the system is then two times
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FIG. 6. Data collapse of width vs bulk height achieved by res-
caling with the maximum width and the filling height, respectively.
Data for systems containing different numbers of grains N are plot-
ted. Filling heights range from 9 to 69. (a) Without gravity. (b) With
gravity.

the original filling height. For symmetry reasons there is no
drag force between the upper and lower parts of the system,
which explains the equivalence. And again for symmetry rea-
sons the curve W(z) must be perpendicular to the plane of the
removed piston.

Interestingly, the presence or absence of gravity has no
influence on the data collapse: The master curve given by
Eq. (1) is valid for both cases (Fig. 6).

D. Role of gravity

Significant efforts have been made recently to understand
the behavior of wide shear zones. However, all experimental,
theoretical, and numerical studies subjected to split-bottom
shear cells (either straight or cylindrical cells) [4—11,13] in-
vestigated shear zones under gravity.

Gravity leads to an inhomogeneous stress distribution in
the system. Stresses even go to zero as the free surface of the
sample is approached. It is not implausible to imagine that
gravity might be responsible for certain features of the shear
zones (e.g., their widening toward the free surface).

In Fig. 8 we show the stress component o, at the sym-
metry plane of the shear cell. It can be seen that o, is pro-
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FIG. 7. (Color online) The system and its mirrored counterpart
above.

portional to the depth in the presence of gravity and approxi-
mately constant without gravity.

Recently, Depken er al. [10,11] argued that in the quasi-
static regime one cannot achieve wide shear zones, if the
effective friction coefficient g is assumed to be constant.
For constant u.g the shear zone should localize to a thin
layer. In their model the widening of the shear zone is attrib-
uted to the dependence of s on the angle ® between the
direction of gravity and the local tangent plane of the con-
stant velocity surfaces. (In other words, they assumed that
the frictional properties of the material depend on the orien-
tation of gravity with respect to the local sliding plane.)

Our simulation data do not support the above picture. The
effective friction ¢ might vary throughout the shear zone,
however, the direction of gravity does not seem to play any
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FIG. 8. The stress o, as the function of depth. Full circles are
recorded in gravity while open circles correspond to zero gravity
where the entire pressure is provided by a piston. For each case we
plot four different curves which represent a different number of
grains filled in the shear cell (N: 5000, 10 000, 15 000, 20 000, and
25 000). The filling height Hg; changes proportionally to N. In
gravity o, corresponds to hydrostatic pressure. ppg is the pressure
on the piston in zero gravity.
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FIG. 9. Width of the shear zone at the top of the systems plotted
as function of the filling height. Gravity reduces the width of the
shear zones. Lines are not fits, they only show the slope of exponent
2/3.

important role here. As we discussed in previous sections the
velocity profiles are qualitatively the same no matter whether
gravity is present or not. Surprisingly, body forces or de-
creasing pressure are not needed for wide shear zones.

In fact, shear zones exhibit even larger width when grav-
ity is switched off. The width gets larger by a factor 1.2+0.1.
This can be seen in Fig. 9 where the top width of the shear
zone is plotted versus filling height.

Why gravity contracts the shear zone can be explained by
the pressure distribution. At the bottom the pressure, and thus
also the frictional forces, are much stronger than at the top of
the system. Therefore the rheology is dominated by the lower
part of the system. Compared to the case of homogeneous
pressure this acts as if the system had an effectively smaller
filling height, which leads to a smaller width of the shear
zone. The contracting effect of gravity is also discussed in
[16] based on the principle of minimum energy dissipation.

The experimental data of Fenistein et al. [5,8] showed
that W,,,(Hg,) is approximately a power law with exponent
2/3. Wyop(Hygy) found in our simulations is shown in a log-
log plot in Fig. 9, where the exponent 2/3 is also indicated
for comparison. The data follow approximately the experi-
mental behavior. For a precise value of the exponent or a
discussion of deviations from a power law better statistics is
needed, however.

E. Influence of additional parameters

It was assumed so far that the flow is quasistatic, i.e., the
shear velocity vy, is small enough that no rate dependence
is observed in the behavior of the shear zone. We also in-
tended to choose the width L, and the length L, of the sys-
tems large enough in order to exclude their influence on the
flow. Furthermore, it was assumed that the analysis of the
shear zone was taken after initial transients in the stationary
flow regime, i.e., the total shear displacement N was large
enough to ensure complete relaxation.

In this section we check the influence of the parameters
L,, Ly, N\, and vy, to show that they are chosen properly and
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do not alter the properties of the shear zone. For this purpose
we take one of the previous samples as a reference system
and demonstrate the role of the four parameters there. The
reference system contains N=10 000 grains, has the size L,
=80, L,=25, Hg=25.6 (this system appeared already in
Figs. 4-6 and 9).

First we vary the width of the system L, and the number
of grains N proportionally to L, in order to maintain the same
filling height. Other parameters are constant. The effect on
the width of the shear zone can bee seen in Fig. 10(a).
Around the reference point L,=80 the width remains con-
stant. The shear zone “feels” the effect of the side walls only
if L, drops below 40 where the shear zone can be strongly
contracted by lowering L,.

For the parameter Ly we test values 12.5, 25, and 50
(again N is changed proportionally) while other parameters
are constant. Figure 10(b) shows that the width of the shear
zone remains essentially the same (changes are small and
without systematics).

In order to avoid initial transients all the systems pre-
sented in this paper undergo a preshearing over a total dis-
placement of more than A >60, and only after that we start
collecting data. Figure 10(c) shows that the transient period
is indeed completed during the preshearing: The width of the
shear zone becomes independent of the displacement \. The
origin of the initial transient is discussed in Sec. IIT F.

Due to the larger time resolution applied here velocity
fluctuations become also larger. In order to improve the sta-

tistics 20 independent simulation runs were taken. In each
case the system had the same macroscopic parameters as our
reference system. In Fig. 10(c) the time evolution of W,
was obtained by ensemble average over the 20 simulations.

Next we turn to vy, If pressure conditions are the same
it depends on the speed of driving whether the flow is qua-
sistatic. For relatively large driving speeds, but still in the
dense flow regime, inertia effects come into play, which
weaken shear localization and results in wider shear zones.
Then the width of the shear zone can be made smaller by
lowering the driving speed. But if the driving gets slow
enough the rheology becomes independent of the driving rate
and the shear zone reaches its minimum width. We test the
effect of the driving rate in our reference system by taking
five times smaller shear velocity. The new bulk width of the
shear zone is compared with the original one in Fig. 10(d).
The data show no further decrease of the width. The width
for the reduced driving is even slightly larger due to random
fluctuations. Within the accuracy of our numerical measure-
ment the two curves can be regarded as equal.

F. Shear zone versus critical zone

The shear zone is the region where the major part of the
shear deformation takes place. It is described by the function
W(z). The material, however, is not solid outside the shear
zone either. Split-bottom cells fluidize the material every-
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where, however, the shear rate becomes many orders of mag-
nitude smaller far from the shear zone.

In this section we would like to discuss the concept of the
critical state. It has not gotten any attention so far in the
context of the split-bottom shear cells, although it leads to
the emergence of a relevant and new type of zone.

It is known that the mechanical properties of granular
media are influenced strongly by the preparation. If one
starts shearing a packing the behavior can be different de-
pending on the initial state (density, structure of the contact
network, etc.): It can lead to different stress responses, effec-
tive friction, dilation or contraction, etc. However, if the ma-
terial experiences large enough local strain it reaches a
unique state regardless of the preparation history. This is the
critical state [17-21] where the material organizes and main-
tains its microscopic inner structure on shearing. After the
critical state has been reached unlimited shear deformation
can occur without changes of stresses or density. The char-
acteristic deformation scale needed to erase the memory of
the material and reach the critical state is typically around
y=0.2, where v is the cumulative shear strain.

Before the shearing starts in the split-bottom cell the fab-
ric of the material reflects the direction of the initial com-
pression or gravity. With the shear deformation this structure
is destroyed and new contacts are created against the direc-
tion of the shear. This gives rise to strain hardening: The
resistance of the material against shear is increased. This
does not happen simultaneously all over the sample. When
regions in the middle of the shear cell are already in the
critical state, regions far away can still be frozen in the initial
configuration.

At the beginning, the zone of the critical state starts grow-
ing from the split line at the bottom. It reaches quickly the
top of the system and also spreads sideways. As the shear
rate is very small far from the symmetry plane, the growth of
the critical zone becomes extremely slow here. In that sense
a steady state cannot be reached in the whole system. One
expects the flow to become stationary only inside the critical
zone. In our opinion the evolution of the critical zone can be
seen in a recent experiment [22] in a cylindrical split-bottom
cell, where the spreading of a dilated zone was observed in a
sample that was initially compactified by tapping.

In our case the growth of the critical zone is clearly indi-
cated in Fig. 5. The velocity of a given point in the system
reaches its final value only after the region becomes critical.
The position where the velocity data depart from the station-
ary curve mark the border of the critical zone. The different
velocity profiles recorded at different stages of the simulation
show how the width of the critical zone is increasing with
time. It can be attributed to the strain hardening that the
shear rate decreases at a given position until it becomes criti-
cal.

The reduction of the shear rate due to strain hardening
also explains the relaxation of the shear zone width that is
shown in Fig. 10(c). In the early stage of the simulation
where the critical zone is smaller than the shear zone the
shear rate is slightly enhanced outside the critical region.
This makes the shear zone a bit wider. After the whole shear
zone becomes critical this additional widening effect ceases,
and W,,, is reduced to its final value.
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According to this interpretation the initial transient of the
shear zone is due the time evolution of the critical region.
One can estimate the shear displacement \ that corresponds
to the transient period by matching the size of the stationary
shear zone and the growing critical zone. Using the station-
ary velocity profile and the cutoff shear strain y=0.2 one
gets A=7.7 for the transient. This is in excellent agreement
with the relaxation observed in Fig. 10(c).

The growth of the critical zone and the transient of the
shear zone can be reproduced within the framework of a
simple lattice model [16] developed for quasistatic shear
flows. The presence of the critical zone can be observed also
in the stress field. The next section is devoted to this ques-
tion.

G. Stresses

As the average local velocities have only a y component
and the system is translational invariant in the y direction,
the local strain rate in the (x,y,z) frame has the form

Jdvu,
0O — O
ax
1| dv Jv
- =2 0 — 1. (2)
21 ox 0z
v,
0 2 0
dz

By means of a rotation around the y axis a new local frame
(u,y,v) can be chosen in which the strain rate is

Jv,

0o —J o0
du
—| Jv, .
Wy o 3)
du
0 0 0

If initial conditions are forgotten in the critical state (also
called steady state flow), stress and fabric tensors are ex-
pected to have the same principal axes as the strain rate
tensor. Then the stress tensor must have the form [10]

O Oy Oy P 7 0
Oy Oy Oy |=| T P O (4)
o,, O, O, 0o 0 P

vu vy vv

Depken et al. [11] tested stresses in the straight split bottom
cell by soft particle molecular dynamics simulations. They
found the expected behavior in the middle part of the cell
where stress and strain tensor were collinear and stresses
took the form (4).

However, if the material still remembers its initial struc-
ture the alignment of stress and strain is not necessarily
valid. Therefore we determine a second local frame
(u',y,v") from the condition 0y, =0,,=0 and evaluate the
angle « between the two directions (u,v) and (¢',v") in the
(x,z) plane. The lower part of Fig. 11 shows indeed that the

angle « approaches O for large shear deformations 7y, while

051301-7



RIES, WOLF, AND UNGER

1.2
1he |
Qor
2Ty
0.8 -4
4
0.6

ouv/Oyy cyy/cu,u, , Ol

FIG. 11. The effect of the local shear strain 7y. Crosses and
circles show ratios of normal stress components o,/ and
yryr] oy, tespectively. The parameter « (triangles) indicate the
angle between the local shear stress and shear strain.

the principal directions of stress and strain rate tensor differ
during the transient. Correspondingly, o/, approaches O for
large shear deformations (see Fig. 12), as predicted by Eq.
(4).

Our numerical test was based on a different method than
the one used by Depken et al. [11], the contact dynamics
algorithm [14,15], and we used slightly different conditions
(zero gravity, piston). Nonetheless, we found the same be-
havior for regions where the material experienced large shear
deformation. Here stress and strain tensors align and the
stress corresponds to the reduced form in Eq. (4).

Stress data recorded in a system of 100 000 grains with
total shear displacement 820 are presented here as the func-
tion of the cumulative local shear strain . Figure 11 shows
stress ratios o, /0, and o,/ 0. In the critical zone
o, and (ryy'are indeed the same and the value o,/ is
about 10% smaller.

IV. CONCLUSION

We studied shear flow in a straight split-bottom cell by
means of computer simulations. The formation of wide shear
zones was analyzed in the presence and in the absence of
gravity. In the former case pressure scales with depth; in the
latter case it is approximately constant. However, in both
cases the same type of wide shear zones emerge.

We showed that the widening of the shear zone in the bulk
can be described by one master curve, which holds for vari-
ous sizes and pressure conditions. The shape of the widening
function is a quarter of a circle and not a power law as was
suggested before. We hope that this result will promote the
development of the proper continuum theory for quasistatic
flows.
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FIG. 12. The remaining shear stress o, vanishes for large
shear deformations. The open circles and dots correspond to mea-
surements started at A=285 and 700, respectively. In both cases the
measurement lasted over a period A=120.

We analyzed the growth of the critical zone and its effect
on the rheology. It influences the velocity field and the
stresses, and it causes a transient of the shear zone at the
beginning of the shearing.

It was shown that the form of the stress tensor becomes
simpler with increasing shear strain y. The region, where the
stress tensor takes the reduced form (4), was also analyzed
by Depken et al. [11]. The authors found that this region can
be best characterized by the inertial parameter I [3], which is
defined to be proportional to the shear rate y and to the
inverse pressure. As it was pointed out in [11] it is not clear
how the emergence of the inertial number can be reconciled
with the rate independence of quasistatic flows. It is the task
of future work to clarify the question of what influence the
parameters y and / have on the stress tensor in the case of
slow deformations.

Note added in proof: Recently we learn about a similar,
independent molecular dynamics study by Luding [24],
largely in agreement with our findings using contact dynam-
ics.
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